تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

Authors

  • میررئوف هادئی دانشگاه تربیت مدرس
  • همایون کردی دانشگاه تربیت مدرس
Abstract:

    در سال‌های اخیر با بهره‌گیری از روش‌های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه‌های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی‌های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می‌باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی‌ها در حفریات سطحی و زیرزمینی از اهمیت ویژه‌ای برخوردار می‌باشد. بررسی جامع دستاوردهای علمی‌در خصوص تعیین سختی برشی شکست در نمونه‌های سنگی حاکی از دقت قابل قبول آزمایش‌های پانچ و جعبه برش برای این منظور بوده ولی کماکان مشکلاتی در تعیین سختی برشی شکست در فرایندهای محاسبه‌ای در مهندسی وجود دارد. شبکه‌های عصبی مصنوعی قادر هستند با آموزش صحیح، رابطه منطقی بین متغییرهای مختلف برقرار نموده و با دقت کافی، مقادیر سختی برشی شکست را پیش بینی نمایند. در این مقاله با استفاده از نتایج حاصل از آزمایشات آزمایشگاهی و انتخاب پارامترهای موثر در میزان سختی برشی شکست، مدل بهینه‌ای از شبکه عصبی مصنوعی برای هر سری از داده‌ها ایجاد شده و میزان دقت شبکه مورد ازریابی قرار گرفته است. در انتها امکان مقایسه تطبیقی براساس مدل آماری رگرسیون خطی، عرضه شده است.      

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

full text

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  gf(انرژی مخصوص شکس...

full text

مدل‌سازی عمر خستگی اتصالات دو لبه برشی با استفاده از شبکه عصبی مصنوعی

خستگی یکی از عوامل اصلی در واماندگی اتصالات مکانیکی و صفحات در صنایع هوافضا و صنایع اتومبیل‌سازی می‌باشد پدیده‌ی خستگی در اثر بارگذاری متغیر به زمان رخ می‌دهد. در این پژوهش نتایج تجربی عمر خستگی اتصالات دو لبه برشی آلومینیم 3T -2024 Al در بارهای مختلف از تست خستگی به دست آمده و نتایج حاصل برای مدل‌سازی با شبکه عصبی مصنوعی استفاده شده است. شبکه‌های عصبی مصنوعی با پردازش داده‌های تجربی، دانش یا ق...

full text

تخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی

یکی از آزمایش‌های اساسی در فرایند طراحی روسازی‌های انعطاف‌پذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوط‌های آسفالتی با استفاده از شبکه‌های عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانه‌بندی ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 5

pages  33- 44

publication date 2008-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023